

Enabling Secure Ad-hoc Collaboration

Presenter - Karlo Berket (<u>KBerket@lbl.gov</u>)

Deb Agarwal (<u>DAAgarwal@lbl.gov</u>)

Lawrence Berkeley National Laboratory

Goals

- support collaboration
 - able to form ad-hoc
 - add users and services on the fly, as needed
 - scalable to large established collaborations
- flexible security
 - includes a range of mechanisms
 - allows appropriate levels of security
- minimal dependence on any single resource or server
 - these provide added value when present
- easy to collaborate
 - no one will use it otherwise

Goals

- support collaboration
 - able to form ad-hoc
 - add users and services on the fly, as needed
 - scalable to large established collaborations
- flexible security
 - includes a range of mechanisms
 - allows appropriate levels of security
- minimal dependence on any single resource or server
 - these provide added value when present
- easy to collaborate
 - no one will use it otherwise

- what needs to be reevaluated
 - communication
 - authentication and authorization
- applications
 - information-sharing tool (scishare)
 - Pervasive Collaborative Computing Environment (PCCE) secure messaging tool
- conclusion

- secure group communication
 - architectures
 - InterGroup protocols
 - Secure Group Layer
- information-sharing tool (scishare)
- PCCE secure messaging tool
- conclusion

Secure Group Communication

- (reliably) communicate with the other collaborators
- security
 - know the identities of the other collaborators
 - protect information
 - authorize users
- scalability

Achieving Secure Group Communication (1)

- unicast mechanisms (TCP and SSL)
 - architectures
 - centralized server
 - completely connected mesh
 - overlay network
 - advantages
 - existing infrastructure
 - familiar to developers
 - disadvantages
 - inefficient
 - single point of failure
 - hard to scale
 - complex to manage

Achieving Secure Group Communication (2)

- IP multicast-based mechanisms (InterGroup and Secure Group Layer)
 - add to IP multicast
 - acknowledgments and retransmissions
 - membership
 - message ordering
 - advantages
 - efficient
 - easier to scale
 - disadvantages
 - lack of IP multicast infrastructure deployment
 - unfamiliar paradigm to developers

InterGroup Architecture

InterGroup Design

- node
 - automatically handles membership, message ordering and retransmission of missed messages
 - uses IP Multicast to transmit messages
- client (API)
 - usable as a library that connects via TCP to the InterGroup node
 - allows machines without multicast connectivity to participate
 - developed for ease of use

Implementation

- current release v1.5
 - IG Node (Java)
 - deamon listening for client connections
 - flow/congestion control very crude
 - reliable group ordered delivery
 - IG Client (Java, C++, Python)
 - connects to IG node using TCP
 - C++ client (unix flavors only)
 - Python client is SWIG wrapping of the C++ client

Secure Group Layer Goals

- provide a secure channel for the group
- authorization of group members (individually enforced)
- group key management (not centralized)
- group security optional
- portable implementation

SGL Implementation

- prototype release (in progress) in C++
 - built using recently proven cryptographic algorithms
 - targeted for controlled environments
 - support for anonymous, password-based, and certificate-based modes
 - uses InterGroup as transport
 - same API as InterGroup (with security extensions)
 - similar to SSL/TCP model

- secure group communication
- information-sharing tool (scishare)
- PCCE secure messaging tool
- conclusion

Scishare Goals

- store and manage information on local storage facilities
- share information with remote participants
- lightweight
- scalable
- secure

What's Different Here?

- use of group communication mechanisms for searching
- security mechanisms and policies for ad hoc information sharing based on
 - Secure Group Layer (SGL) for securing group communication
 - support for X.509 identity certificate-based authentication and authorization

Implementation

- initial release scheduled for Q3 2003
- software in Java (requires Java 1.4)
 - a simple messaging framework for resource discovery (based on XML)
 - information discovery between hosts using InterGroup and HTTP for communication
 - search for files by file name, description, and file size
 - download a file whose metadata was returned as a result of a search
 - manage sharing of local files

- secure group communication
- information-sharing tool (scishare)
- Pervasive Collaborative Computing Environment (PCCE) secure messaging tool
- conclusion

Current PCCE Architecture

- PCCE Server
 - maintains long-lived information (authorized users, available tools, system venues, descriptions, etc.)
 - performs authentication of users (entry point into the system)
- IRC Server
 - back-end for messaging
 - maintains short-lived information (user-created venues, venue participants, etc.)
- PCCE Client
 - user front end
 - communicates with other clients through servers

Future PCCE Architecture

- InterGroup/SGL
 - used for exchange of short and long lived information
 - replaces IRC server as back-end for messaging
- PCCE Server
 - still maintains long-lived information
 - grants users additional capabilities
- PCCE Client
 - maintain short-lived information
 - entry point to the system (limited capabilities without server)

- secure group communication
- authentication and authorization
- information-sharing tool (scishare)
- Pervasive Collaborative Computing Environment (PCCE) secure messaging tool
- conclusion

Conclusion

- InterGroup and SGL provide core communication services for ad-hoc or infrastructure-enabled collaborations
- scishare example of tool designed with this model in mind
- PCCE example of moving from client-server model to ad-hoc model

Authorization and Authentication in Ad Hoc Environments

- central database that most existing systems use may not be available
- shared secrets not feasible in many situations and not scalable
- independent (local) databases difficult to maintain and lead to inconsistencies
- real-time interfaces do not work for unsupervised applications
- likely solution is some combination of the above

More info

- InterGroup protocols http://www-itg.lbl.gov/CIF/GroupComm/InterGroup/
- SGL http://www-itg.lbl.gov/SecGrpComm/index.html
- scishare http://www-itg.lbl.gov/P2P/file-share/
- PCCE http://www-itg.lbl.gov/Collaboratories/pcce.html